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ABSTRACT  

Water systems have complex component interactions necessitating development and evaluation of management amidst 

uncertainties of climate and constrained natural resources. Conceptual models such as Water Evaluation and Planning 

(WEAP) when used are effective in planning and management as they forecast future effects of resource use efficiently for 

sustainable development at sub-catchment level by using existing hydrological and climate data. Conceptual models act as 

corrective measures to poor water resources management. This study aimed at using WEAP model to forecast future 

demand by analyzing scenarios on efficient water use in Mbagathi sub-catchment. To run WEAP model, a GIS map of the 

sub-catchment, climate data, hydrological and water demand data were used. High population growth and prolonged 

drought were predicted to increase water demand. Re-use though not optimally practised, was predicted to reduce unmet 

water demand by 51-59% compared to reduced conveyance losses of 4-12% throughout the year. The study concluded that 

wastewater re-use could be a viable solution to challenges experienced in Mbagathi sub-catchment and ultimately, the 

area's sustainability. 
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INTRODUCTION 

 

Despite its fundamental importance, water is a scarce resource making it impossible to maximise on its net returns for 

sustainable growth. Poor configuration of irrigation systems, climate variability, subsidy policies and production costs 

aggravate the situation making water expensive to manage and use (Mounir et al., 2011). Allocation of the resource, 

policies on water sustainability and environmental quality are issues of priority in water management (Uitto, 2004; Conway 

et al., 2009). Using models such as WEAP, helps simulate available water resources effectively and reliably, as well as 

analysing the consequences of mutual-conflicting interests of divergent water allocation and management, which results to 

sustainable development (Alfarra, 2004; Kinoti et al., 2010).   

The threat of water scarcity due to over-exploitation and a growing population in Mbagathi sub-catchment as reported by 

Katana et al. (2013) necessitates WEAP modelling to better plan and manage the resource sustainably. In addition, the 

region suffers extended drought, over-abstraction of water, poor water conservation strategies and corruption among water 

management enforcers (Koskei & Ngigi, 2013). Timing to reverse these challenges necessitated the current study whose 

objective was to forecast water demand and efficient use in Mbagathi sub-catchment now and unto the future using WEAP 

model. 

MATERIALS AND METHODS 

 

Location of Study Area 

 

The study was conducted in Mbagathi sub-catchment of Athi catchment, which traverses Nairobi, Kajiado and Machakos 

counties and is situated in North- South grid 240000-269000 and East West grid 9855000-984300. The sub-catchment 

covers an area of 166km2 and has Keraraponi, Kisembe, Mokoyeti, Kandisi and Kiserian streams as major tributaries of 

the main river, Mbagathi River that originates from Ngong hills at an altitude of 1980m above sea level and flows through 

the industries to Athi River town (Krhoda, 2002; Kihara, 2002). During wet seasons, Mbagathi River flow is estimated at 

0.6m3/s and 0.01m3/s in dry seasons (Krhoda, 2002). Kiserian dam has been constructed along Mbagathi River to retain 

excess surface flow. Nairobi Aquifer Suite supplies Mbagathi sub-catchment with groundwater. Rapid population growth 

and unplanned settlements have resulted to land degradation upstream of the sub-catchment negatively affecting the 

quantity and quality of its fresh water resources and leading to unsustainable development. Inter-tropical Convergence 

Zone (ITCZ) controls the climate of the area, as in most parts of Kenya, as the winds and pressure belts shift (FAO, 1998; 

Karuku et al., 2014). 
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Figure 1: Mbagathi sub-catchment map (Researcher, 2016). 

 

DATA REQUIREMENTS 

 

 Modelling in WEAP required a raster file, which are pixels of Mbagathi sub-catchment map and its main river, made using 

Q-GIS. Data on water use for domestic, industrial, commercial and subsistence farming was derived from a survey 

conducted in 2015, which involved 716 respondents selected through a snowballing approach. Secondary data on demand 

drivers such as population, irrigation withdrawals per person and per hectare, percentage consumption, return flows, losses 

and water re-use as well as hydrological data on river gauge flows, flow requirements and groundwater storage were 

obtained from WRMA databases of 2010 to 2015. Climate data for 2010-2015 was obtained from Kenya Meteorological 

Department at Dagoretti Corner Station (No. 9136164). 

CALIBRATION OF WEAP MODEL 

 

Calibration was a three-step process involving training, testing and analyses of data. In training, effective precipitation, 

runoff/infiltration ratio and soil hydraulic conductivity were kept unfixed while groundwater characteristics were fixed. 
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The period of calibration was between 1999 and 2015, when naturalised flow and precipitation time series were available 

for the three stream-flow gauge stations that formed divisions A, B and C of Mbagathi sub-catchment as in Figure 1. 

Calibration was manually done by trial and error optimisation of unfixed parameters. Effective precipitation, 

runoff/infiltration ratio and soil hydraulic conductivity were assigned initial values of 100%, 50/50 and 1, respectively 

which were altered one at a time using steps of ± 0.5 %, ± 5/5 and ± 0.1 until the routine exhausted the assessment criterion. 

The model was run to test and compare changes in simulated and observed flow before and after parameter optimization. 

Figure 2: Map of the Sub-catchment in WEAP Model 

 

 

Validation of WEAP model 

To validate WEAP model performance, two objective functions estimated the accuracy of the simulation. In this study, 

two criteria were used; the Nash-Sutcliffe efficiency criterion and the least squares objective function: Equ.1 and 2:  
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Where, EFF is the one minus the sum of absolute squared differences between observed and simulated values standardized 

by the variance of historical values during the validation period and LSL is a regression analysis that minimizes total 

squared errors resulting from differences in observed and simulated values to fit them in a model.  

Where, Qobsi is the observed stream-flow (m3/s), Qsimi the simulated stream-flow (m3/s), N the number of observations 

and Qbar is the observed monthly flow over the whole period. 

Least squares objective function prevented bias towards larger flows during optimization while Nash- Sutcliffe Efficiency 

Criterion is an efficiency criterion where 1 means perfect agreement of observed and simulated flows while negative values 

show disagreement. The coefficient of determination (R2) that indicates the capacity of a model to replicate the observed 

values based on total differences of outcomes was calculated to test the goodness-of-fit of the simulation. 

WATER DEMAND SCENARIOS BUILD-UP 

 

Assessment of changes in sustainable development in aspects of population, climate, water re-use and controlled 

conveyance losses in the sub-catchment from 2015 to 2050 involved three scenario building i.e. current, reference and what 

if (future) scenarios. The baseline year, 2015 was used to develop the current scenario, while the reference scenario was 

an evaluation if where no management measures are taken on the current scenario and the what if scenarios were 

assessments of future socio-economic developments. Five what if scenarios were analysed as follows:- 

1. What is the effect on available water demand if population growth increases? 

2. What is the effect on unmet water demand if prolonged dry climate sequence occurs? 

3. What is the effect on water demand if the storage capacity of sub-catchment reservoir is increased? 

4. What is the effect on monthly-unmet water demand if water conveyance losses are reduced? 

5. What is the effect on monthly-unmet water demand if water re-use is intensified? 

Scenarios generated were compared against their water requirements and impacts in the domestic, industrial, subsistence 

and commercial farming demand sites. Predictions were made using the reference scenario after which, they were compared 

with proposed water use efficient practices.  

Data estimated on stream-flow and demand was subjected to Analysis of Variance (ANOVA) and mean separated using 

LSD to compare the means of treatments and their interactions. The statistical significance referred to α = 0.05 unless 

otherwise stated. 

RESULTS AND DISCUSSION 

WEAP model Calibration and Validation 

A comparison of observed and simulated yearly flows for the calibration period is shown in Table 1. The model showed 

closeness of fit between observed and simulated flows. However, in the year 2001, 2002, 2006, 2008 and 2014 when the 

area experienced peak flows, the model underestimated simulated values compared to 2000, 2005, 2007, 2010 and 2012 

when flows were down and the model overestimated low flows though not significantly (p≤0.05). Over- and under-

estimation of simulated flows could be attributed to inaccurate estimation of non-calibrated water balance elements such 

as groundwater recharge and evapotranspiration by the model and the use of effective precipitation, runoff/infiltration ratio 
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and soil hydraulic conductivity alone to calibrate. Similar observations were made in Pangani basin, Tanzania where 

calibration errors were attributed to the use of effective precipitation and soil hydraulic conductivity alone to adjust WEAP 

model (Ndomba et al., 2008).  

Table 1: Simulated and observed yearly flow in Mbagathi sub-catchment in the calibration period (1999-2015) 

Year Observed flow 

(m3/s) 

Simulated flow 

(m3/s) 

Mean 

(m3/s) 

Year Observed flow Simulated flow Mean  

1999 357a 332a 344.5a 2008 1020c 902c 961c 

2000 145b 167b 156b 2009 323a 352a 337.5a 

2001 1350c 1213c 1281.5c 2010 195b 224b 209.5b 

2002 995c 978c 986.5c 2011 378a 313a 345.5a 

2003 302a 282a 292a 2012 175b 205b 190b 

2004 298a 270a 284a 2013 766c 692c 729c 

2005 102b 191b 146.5b 2014 1378c 1296c 1337c 

2006 817c 745c 781c 2015 290b 387b 338.5b 

2007 178b 234b 206b     

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

WEAP model priorities that capture base flow during wet seasons and stream-flow during dry seasons probably explain 

over- and under-estimation of extreme flows in the study area.  During wet seasons when water is plenty, WEAP model 

does not prioritize on estimating peak flows hence their under-estimation unlike drier seasons when base flow estimation 

is a priority in the model due to its importance to water users downstream hence over-estimation of low flows in the study. 

Similar observations were made in Quiroz-Chipillico watershed in California where high and low flows were under- and 

over-estimated in WEAP model calibration due to its priority differences (Notter et al., 2012; Flores-Lopez et al., 2016). 

The conceptual nature of WEAP model that assumes even distribution of rainfall, runoff and stream-flow throughout the 

sub-catchment, which under natural conditions is impossible probably explains observed over-and under-estimation of 

flows. The data concurs with that in Upper Tana catchment where the conceptual nature of WEAP model assuming even 

distribution of rainfall and runoff resulted to simulation errors ranging between 2.9 and -4.5% during dry and wet years, 

respectively (Droogers, 2009). 

The relationship between observed and simulated flows gave an acceptable performance of WEAP model R2≥0.964 (Figure 

2). This fulfilled the requirement by Santhi et al. (2001) who recommended R2 values above 0.60 and showed WEAP's 

ability to replicate sub-catchment processes accurately by predicting their responses to various outputs. Similar findings 

were reported in Nyando (Dienya, 2007), Pekerra (Mugatsia, 2010) and Ruiru basins (Thubu, 2012), Kenya where R2 

values were 0.88, 0.79 and 0.85, respectively.  

Figure 2: Observed and simulate stream-flow of Mbagathi sub-catchment in the validation period (Researcher, 2017) 
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Results on the goodness-of-fit in observed flows are represented in Table 2. EFF values in the sub-catchment ranged 

between 0.59 and 0.87. EFF in station 3BA29 was significantly (p≤0.05) lower at 0.59 compared to 3AA04 and 3AA06 at 

0.87 and 0.85, respectively. This observation could be because EFF compares observed and simulated flows using squared 

values hence the tendency to over-estimate higher flows in 3AA04 and 3AA06 while ignoring lower ones in 3BA29. Krause 

et al. (2005) made similar observations when validating WEAP model in a study at Wilde Gera catchment, Germany where 

EFF values in stream-flow gauge stations with high flows were overestimated compared to those with lower ones. LSL 

values ranged between 0.07 and 1.0, which shows its high variability in the sub-catchment. The observation could be due 

to the short validation period of 17 years applied in this study due to data unavailability to capture long-term variability of 

flow in the three gauging stations adequately and accurately. Mango et al. (2011) made similar observation in a Soil and 

Water Assessment Tool (SWAT) calibration, a hydrological model related to WEAP where a shorter calibration period of 

5 years resulted to LSL values ranging between 0.15 and 0.87. Stream-flow gauge station 3AA04 had a significantly 

(p≤0.05) higher LSL of 1.0 compared to 3AA06 and 3BA29 with 0.22 and 0.07, respectively. 

Table 2: Nash-Sutcliffe efficiency criterion and least squares logarithms for three stream gauges in Mbagathi sub-catchment 

Stream-flow gauge 

station 

EFF LSL 

3AA04 0.87a 1.0a 

3AA06 0.85a 0.22b 

3BA29 0.59b 0.07b 

Mean 

LSD (p≤0.05) 

CV% 

0.77a 

0.24 

11.3 

0.43b 

0.33 

13.7 

Values followed by different letters within columns are significantly different. 

The high calculated LSL value could be due to spatio-temporal variations in rainfall and stream-flow since areas around 

3AA04 were upstream and had high rainfall and flow volumes. Areas around gauging stations 3AA06 and 3BA29 had 

lower rainfall and stream-flow was subjected to abstractions leading to low LSL compared to 3AA04. In Olifants 

catchment, South Africa, variability in calculated LSL values was attributed to differences in rainfall and stream-flow 

whereby areas that had high rainfall and stream-flow were reported to have high LSL values and vice versa (Le Roy, 2005). 

R² = 0.9641
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Scenario Analyses 

Reference Scenario Analysis 

Model prediction on water use changes in the sub-catchment during the reference scenario, which is a situation where 

management measures are not applied is presented in Table 3. The model predicted an increase in groundwater use from 

12.4 to 24.5 million m3 between 2015 and 2050. Increases in groundwater consumption in the years 2040, 2045 and 2050 

were significantly (p≤0.05) higher at 20.2, 22.3 and 24.5 million m3 compared to 18.3, 16.6, 15, 13.6 and 12.4 million m3 

in 2035, 2030, 2025, 2020 and 2015, respectively. Predicted increase in groundwater use could be due to a rising population 

leading to its demand for irrigation to produce food and for domestic uses. This trend concurs with reports by Amarasinghe 

et al. (2006) and Bharati et al. (2009) in Godavari and Krishna river basins, India that predicted 67 and 49% rise in 

groundwater use and its unsustainable development, respectively by 2025 due to increased demand for agriculture and 

domestic uses. 

Table 3: Ground- and surface-water use predictions in the reference scenario 

Year Groundwater use 

(Million m3) 

Surface water  use 

(Million m3) 

2015 12.4a 7.0c 

2020 13.6a 7.3c 

2025 15.0a 7.5c 

2030 16.6a 8.1c 

2035 18.3a 9.2a 

2040 20.2b 10.1a 

2045 22.3b 11.6a 

2050 24.5b 12.3a 

Mean 17.9a 9.0a 

Mean figures followed by similar letters on columns are not significantly different at p=0.05 

The model predicted an increase in surface water use from 7.0 to 12.3 million m3 between 2015 and 2050. Increase in 

surface water use in 2035 to 2050 were significantly (p≤0.05) higher and ranged between 9.2 and 12.3 million m3 compared 

to use of the resource in 2015 to 2030 that were between 7 and 8.1 million m3. Unsustainable surface water increases are 

attributed to expected economic development pressures focusing on commercial agriculture that is more water consuming. 

Nyikal (2003) confirmed of an expected shift from subsistence to commercial farming in Kenya due to its economic gains 

but noted that increased water use would be the resultant opportunity cost as it is not sustainable. Poor water harnessing 

during high flows resulting to its loss into the ocean as runoff and inefficient water use leading to wastage and conveyance 

losses could lead to increased ground- and surface-water use in future as predicted. In Diadessa sub-basin, Ethiopia (Tena 

et al., 2016) and Olifants catchment, South Africa (Arranz, (2006), similar predictions showing a future rise in ground- and 

surface-water use due to poor water harvesting and inefficient agricultural practices causing resource wastage and its 

unsustainable development were made using WEAP model. 

Model predictions on reductions in groundwater storage of sub-catchment in the reference scenario are shown in Table 4. 

According to the model, water storage is predicted to reduce in the next 35 years by 278 million m3 from 385.6 in 2015 to 

107.6 million m3 in 2050 indicating its unsustainable development. Predicted groundwater storage reductions between the 

years 2040 and 2050 were significantly (p≤0.05) lower ranging between 173.9 and 107.6 compared to 2035 and 2030 at 

298.5, 309.1million m3, respectively. Groundwater depletion between the years 2030 and 2035 was significantly (p≤0.05) 
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lower ranging between 309.1 and 298.3 compared to 2025, 2020 and 2015 predictions at 351.4, 364.9 and 385.6 million 

m3, respectively. 

Table 4: Projected Groundwater storage between 2015 and 2050 in Mbagathi sub-catchment 

Year Groundwater storage 

(million m3) 

2015 385.6a 

2020 364.9a 

2025 351.4a 

2030 309.1b 

2035 298.5b 

2040 173.9c 

2045 143.2c 

2050 107.6c 

Mean 266.8b 

Mean figures followed by similar letters on columns are not significantly different at p=0.05 

These reductions could be due to excessive abstractions without adequate recharge of Nairobi aquifer especially in drier 

seasons. Mulwa, (2001) and Gichuki & Kiteme, (2000), predicted groundwater depletion in Ngong sub-catchment and 

Upper Ewaso Ngiro North basin, respectively due to excessive drilling of boreholes, unsustainable developments with the 

drawn water and over-reliance on the resource for agricultural and domestic uses. Predicted reductions in groundwater 

storage could be attributed to pollution of surface water in the sub-catchment and under-exploitation of alternative water 

resources such as polished wastewater, which leads to over-pumping. Similar projections have been made in Bangladesh, 

Middle East, China and India (Ali et al., 2009; Wada et al., 2010) where pollution of rivers by agrochemicals and industrial 

effluent, limited wastewater re-use and recycling were predicted to limit groundwater's sustainable use. 

Effects of high population growth on water demand 

Predictions on water demand changes with the high population growth scenario for the domestic, industrial, commercial 

and subsistence irrigation sectors of the study area compared to reference scenario are represented in Table 5. Commercial 

farming water demand was predicted to increase from 85.3 to 113 between 2015 and 2050 in the reference scenario 

compared to 85.3 to 141.6 million m3 for the high population growth scenario in the same period, respectively. Predicted 

increments with a high population growth scenario between the years 2045 and 2050 were significantly (p≤0.05) higher 

compared to other years and the reference scenario. 
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Table 5: Water demand changes in the high population growth scenario 

Sector Scenario 2015 2020 2025 2030 2035 2040 2045 2050 Mean 

 

Water  demand in million m3 

 

Commercial 

farming 

Reference 85.3a 88.8a 92.5a 96.3a 100.1a 104.3a 108.6a 113.0a 98.6a 

High 

Population 

85.3a 91.1a 96.5a 103.1a 110.0a 116.4a 124.2b 141.6b 108.5a 

Domestic use Reference 53.2c 55.4c 57.6c 60.0c 62.5c 65.0c 67.7c 70.5c 61.5c 

High 

population 

53.2c 56.8c 60.2c 62.3c 68.6c 72.6c 77.1a 88.3a 67.4c 

Subsistence Reference 24.5d 25.5d 26.8d 27.6d 28.7d 29.9d 31.1d 32.4d 28.3d 

High 

Population 

24.5d 26.1d 27.7d 29.5d 31.9d 33.4d 36.0d 40.6d 31.2d 

Industrial  Reference 15.3e 16.2e 16.3e 17.5e 18.2e 18.9e 19.4e 19.9 e 17.7e 

High 

Population 

15.3e 16.6e 17.6e 18.8e 20.0e 21.2d 22.6d 25.8d 19.7e 

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

Subsistence farming water demand was predicted to increase from 24.5 to 32.4 in the reference scenario and 24.5-40.6 

million m3 in the high population growth scenario between 2015 and 2050 and increments did not have significant (p≤0.05) 

differences. Increased water demand in commercial and subsistence farming sectors could be due to overstretched and 

unsustainable water resources, as it is expected that agricultural practices will intensify and expand for food production to 

cater for the rising population, and for economic sustenance of the sub-catchment in future. In Tana River basin, population 

rise increased water use for commercial farming due to rising food demand and therefore leading to more water abstractions 

for irrigation in the area (Grieg-Gran et al., 2006).  

Domestic water demand was predicted to increase from 53.2 to 70.5 between 2015 and 2050 in the reference scenario 

compared to 53.3 to 88.3 million m3 in the high population growth scenario for the same period. Predicted increments in 

the high population growth scenario for the years 2045 and 2050 were significantly (p≤0.05) higher at 77.1 and 88.3 

compared to a range of 53.2 to 72.6million m3 between 2015 and 2040. Predicted increments in domestic water demand 

could be due to population rise and limited exploitation of alternative water sources such as treated wastewater depicting 

unsustainable water management. Rukuni, (2007) projected a future increase in domestic water demand in Mzingwane 

catchment in Zimbabwe and attributed the increase to the population of growth and limited wastewater re-use and recycling. 

 Industrial water demand was predicted to increase from 15.3 to 19.9 between the years 2015 and 2050 in the reference 

scenario compared to 15.3 to 25.8 million m3 in the high population growth scenario for the same period. Predicted 

increases in water demand for the high population growth scenario in 2040, 2045 and 2015 were significantly (p≤0.05) 

high at 21.2, 22.6 and 25.8 million m3, respectively compared to the period between 2015 and 2035 with a demand range 

of 15.3-20.0 million m3. Rise in industrial water demand could be attributed to increased waste generation, extensive 

pollution of available water resources, expansion in processing industries for value addition and also for job creation in the 

area and limited polishing of wastewater generated from manufacturing processes. In India, Bhardwaj (2005) predicted a 

25% rise in industrial water demand by 2025 due to pro-industrialization tendencies that will increase pollution through 

effluent discharge into the water sources and are antagonistic to sustainable development. 
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Effects of prolonged drought sequence on unmet water demand 

Predicted effects of prolonged drought sequence on water demand in the study area are shown in Table 6. Commercial 

farming water demand was predicted to increase from 85.3 to 113 between the years 2015 and 2050 in reference scenario 

compared to 85.3 to 133.8 million m3 for the extended drought scenario in the same period. Predicted increments in the 

years 2045 and 2050 for the extended drought scenario were significantly (p≤0.05) higher at 125.6 and 133.8 million m3, 

respectively compared to the reference scenario at 109.6 and 113 million m3 in the same period. The model predicted 

increases in subsistence farming water demand from 24.5-32.4 and 24.5-38.4 million m3 in the reference and extended 

drought scenarios, respectively in 2015 to 2050 but increments were not significantly different compared to the reference 

scenario. Predicted increases in water demand for commercial and subsistence farming in the extended drought scenario 

could be due to the unsustainable and dried up rivers and low groundwater recharge leading to limited availability of the 

resource for irrigation. These predictions concur with those in Sacramento basin where extended drought led to increased 

water demand in the agriculture sector as rivers had dried up and yields of aquifers reduced due to poor recharge (Purkey 

et al., 2008). 

Predicted domestic water demand rose from 53.2-70.5 and 53.2-83.4 million m3 in the reference and extended drought 

scenarios, respectively between the years 2015 and 2050. In the years 2045 and 2050, predicted values at 78.3 and 83.4 

million m3, respectively were significantly (p≤0.05) higher compared to 2015-2040 values that ranged between 53.2 and 

73.5 million m3. These observations could be attributed to excessive consumptive uses of water with limited re-use and 

under-exploitation of alternative water sources from roof rainwater harvesting for sustainability of the resource. In Ho Chi 

Minh city of Vietnam (Dan et al., 2011), domestic water demand in prolonged drought periods was predicted to rise because 

of limited water harnessing practices when flow was high and limited re-use despite increased demand. 

Industrial water demand was predicted to rise from 15.3-20.6 and 15.3-24.4 million m3 in the reference and prolonged 

drought scenario, respectively and increments in the years 2040, 2045 and 2050 for the latter scenario were significantly 

(p≤0.05) higher at 21.5, 22.9 and 24.4 million m3, respectively in comparisons with other years. Predicted increments in 

industrial water demand could be attributed to unsustainable polishing of wastewater and loss as effluent to water sources. 

Purkey et al. (2008), Yates et al. (2015) and Azlinda and Mohd (2008) made similar predictions in Sacramento, Langat 

and Upper Colorado basins, respectively where rising industrial water demand was associated with poor adoption of 

wastewater re-use and recycling by firms. 
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Table 6: Changes in Water demand in the prolonged drought sequence scenario 

Sector Scenario 2015 2020 2025 2030 2035 2040 2045 2050 Mean 

 Water  demand in million m3  

Commercial 

farming 

Reference 85.3a 89.6a 93.3a 97.1a 101.1a 105.3a 109.6a 113.0a 98.6a 

Extended 

drought 

85.3a 91.7a 97.6a 104a 110.8a 118.0a 125.6b 133.8b 108.4a 

Domestic use Reference 53.2c 55.9c 58.2c 60.6c 63.0c 65.6c 68.3c 70.5c 61.5c 

Extended 

drought 

53.2c 57.2c 60.9c 64.8c 69.1c 73.5c 78.3a 83.4a 67.6c 

Subsistence Reference 24.5d 25.7d 26.7d 27.8d 29.0d 30.2d 31.4d 32.4d 28.3d 

Extended 

drought 

24.5d 26.3d 28.0d 29.8d 31.8d 33.8d 36.0d 38.4d 31.1d 

Industrial  Reference 15.3e 16.3e 17.0e 17.7e 18.4e 19.2e 19.2e 19.8e 17.7e 

Extended 

drought 

15.3e 16.7e 17.8e 18.9e 20.2e 21.5d 22.9d 24.4d 19.7e 

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

Effects of increased reservoir capacity on water demand 

Predicted effects of increasing sub-catchment's reservoir capacity for storage on water demand in various land-use sectors 

are shown in Table 7 and domestic water demand increased from 53.2 to 93.7 million m3 between the years 2015 and 2050.  

Table 7: Effects of increasing reservoir capacity on water demand 

Sector 2015 2020 2025 2030 2035 2040 2045 2050 Mean 

Water demand in million m3  

Commercial 

Farming 

85.3a 83.1a 79.3a 77.5a 72.9a 70.6a 68.1b 64.8b 75.2a 

Domestic use 53.2b 58.7b 63.3b 69.2b 78.9a 81.3a 85.6a 93.7a 73b 

Subsistence 

farming 

24.5c 23.5c 21.9c 19.4c 16.2c 13.7c 11.7c 8.9d 17.5c 

Industrial use 15.3c 15.1c 15.0c 14.8c 14.7c 14.6c 14.4c 14.2c 14.8c 

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

Predicted water demand in the years 2035, 2040, 2045 and 2050 was significantly (p≤0.05) higher at 78.9, 81.3, 85.6 and 

93.7 compared to 53.2, 58.7, 63.3 and 69.6 million m3 in 2015, 2020, 2025, and 2030, respectively. This observation could 

be due to an expected population rise due rural-urban migration and increased availability of the resource encouraging its 

inefficient and unsustainable use in the sub-catchment. In Nablus City of Palestine (Rahma, 2009) and western Algerian 

cities (Hamlat et al., 2011), WEAP model predictions showed that increasing the storage capacity of reservoirs would lead 

to inefficient use of the water resource by residents since scarcity would not be a concern. 
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Commercial farming water demand was predicted to reduce from 85.3 to 64.8 million m3 between the years 2015 and 2050. 

In 2045 and 2050, predicted reductions were significantly (p≤0.05) lower at 68.1 and 64.8 million m3, respectively 

compared to the period between 2015 and 2040 where increments ranged from 85.3 to 70.6 million m3. Expected reductions 

in commercial farming water demand could be attributed to an altered flow regime of Mbagathi River leading to poor 

groundwater recharge and surface water unavailability especially downstream of the sub-catchment where commercial 

farming is concentrated. Limited water availability will encourage commercial farmers to shift to other sustainable 

economic activities where water is not a priority such as quarrying and stone cutting. Similar results were reported in India 

after construction of Narmada and Sardar-Sarovar dams where commercial farmers located downstream of the Narmada 

basin abandoned the farming for quarrying due to water unavailability (Manatunge et al., 2010).  

Subsistence water demand in the study area was predicted to reduce from 24.5 to 8.9 million m3 between the years 2015 

and 2050 and the latter was predicted to have significantly (p≤0.05) low water demand at 8.9 million m3 compared to other 

years. This projection could be because of land use changes that will favour real estate development and construction of 

green houses in Ngong and Kikuyu areas where subsistence farming is currently concentrated. Mundia and Aniya (2006) 

predicted a reduction in subsistence water demand in Nairobi basin by 15% in 2030 following intensified knowledge on 

construction of greenhouses and urbanization of its rural areas. 

Water demand in the industrial sector was predicted to reduce from 15.3 to 14.2 million m3 between the years 2015 and 

2050 though reductions were not significant (p≤0.05). This projection could be due to the expectation that companies, most 

of which are located downstream the sub-catchment will adopt cheap wastewater polishing, recycling and re-use techniques 

in the coming years after experiencing unavailability due to increased abstraction and altered hydrological regime upstream. 

The prediction concurs with Stanton and Fitzgerald's (2011) report in Sacramento basin, California where industrial water 

demand is expected to reduce by 12% in 2028 due to increased acceptance of polished wastewater for sustainable water 

management after the sector suffered of water scarcity from an altered flow regime after construction of Shasta dam.  

Effects of reduced water conveyance losses on monthly unmet demand 

Predicted effects of reducing water conveyance losses in Mbagathi sub-catchment on monthly-unmet demand compared 

to reference scenario are presented in Table 8. The model predicted reductions in unmet demand ranging from 4-12% in 

the reduced water conveyance compared to the reference scenario throughout the year, despite the observed monthly 

fluctuations in both cases resulting from rainfall variations.  

Reducing water conveyance losses increase amounts delivered to target users and enhances efficient and effective 

accounting of used water, which could account for predicted reductions in unmet demand in the study area. In South Africa 

(Wilson, 2016), Pakistan, Egypt and India (Sultan et al., 2014), lowering water conveyance losses was predicted to reduce 

unmet demand by 10% as more would be delivered to target users leading to a positive contribution to sustainable 

development. Similar trends were established in Muzzaffarabad, Azad Jammu and Kashmir districts of Pakistan (Azad & 

Sarwar, 2014) and in Thessaloniki, Greece (Arampatzis & Evangelides, 2016) where controlling water conveyance losses 

by repairing broken water pipes and using drip irrigation in agriculture enhanced efficient and sustainable resource use 

through reduced unmet demand. However, reductions were not significant different probably because in WEAP models 

only water losses from leaked pipes that contribute minimally to unmet demand compared to irrigation losses during field 

application and distribution that contribute heavily to total losses. In the Mediterranean area, water losses from leaking 



104 

 

pipes contributed to only 10% of all unmet demand while 90% of losses occurred during distribution and field application 

(Hamdy, 2007). 

Table 8: Effects of reducing conveyance losses on unmet demand 

Scenario/ 

Month 

Reference Scenario Reduced conveyance 

scenario 

Mean 

Monthly unmet water demand in hundred thousand m3 

Jan 44.0a 41.6a 42.8a 

Feb 33.5a 33.0a 33.3a 

Mar 36.9a 35.4a 36.2a 

Apr 35.1a 33.5a 34.3a 

May 35.6a 34.1a 34.9a 

Jun 36.9a 34.1a 35a 

Jul 38.4a 34.9a 36.7a 

Aug 43.8a 41.3a 42.6a 

Sep 36.9a 35.4a 36.2a 

Oct 37.0a 35.3a 36.2a 

Nov 35.7a 34.1a 34.9a 

Dec 36.9a 35.2a 36.1a 

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

Effects of water re-use on monthly unmet demand 

Predicted effects of water re-use in Mbagathi sub-catchment on monthly-unmet demand are shown in Table 9. The model 

predicted reductions that were significantly (p≤0.05) higher in unmet demand and ranged between 51 and 59% in the 

increased water re-use compared to the reference scenario. This observation is attributed to the ability to redirect wastewater 

for environmental flow allocation and aquifer recharge after its re-use thus increasing groundwater availability, reducing 

pollution on freshwater resources and reducing unmet water demand for sustainability of the resource as predicted. Kusanto 

(2013) reported similar evidence in Colorado basin, USA where unmet water demand reduced by 17% after adopting water 

re-use due to increased aquifer recovery and groundwater availability. In India (Kaur et al., 2014) and Bahrain (Ansari, 

2013), water re-use adoption was reported to enhance recharging of water sources leading to sustainable use of the resource.  

Re-using water could reduce unmet demand as predicted because it substitutes demands that do not require high quality 

water and therefore, providing an alternative water source. As such, the limited freshwater would be redirected fully for 

human consumption and other high priority needs. In Israel (Metcalf & Eddy, 2007; Friedler & Penn, 2011) and Palestine 

(Jamal, 2013), wastewater re-use as an alternative water source was predicted to ease unmet demand by substituting 

constrained ground-and surface-water resources that were redirected for high priority needs. 
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Table 9: Effects of increased water re-use on unmet demand 

Scenario/ 

Month 

Reference  Increased water re-

use 

Mean 

Monthly unmet water demand in hundred thousand m3 

Jan 44.0a 15.5b 29.6a 

Feb 33.5a 17.9b 25.7a 

Mar 36.9a 17.6b 27.3a 

Apr 35.1a 16.2b 25.7a 

May 35.6a 16.8b 26.2a 

Jun 36.9a 17.4b 27.2a 

Jul 38.4a 17.4b 27.9a 

Aug 43.8a 17.5b 30.7a 

Sep 36.9a 16.9b 26.9a 

Oct 37.0a 17.5b 27.3a 

Nov 35.7a 16.8b 26.3a 

Dec 36.9a 17.4b 27.2a 

Mean figures followed by similar letters on rows are not significantly different at p=0.05 

CONCLUSIONS 

The study established that WEAP is a useful tool in predicting future water demand and effects of adopting water-use 

efficient methods for sustainability. The model predicted an increase in groundwater use from 12.4 to 24.5 million m3 

between 2015 and 2050. In addition, the model predicted reductions in unmet demand ranging from 4-12% and 51-59% in 

the reduced water conveyance and increased water re-use scenarios, respectively compared to the reference scenario 

throughout the year. Reductions in unmet demand for the increased water re-use scenario were significantly (p≤0.05) higher 

compared to the reference scenario. The model further predicted that if sustainable water management measures are not 

taken (reference scenario) in the study area, groundwater resource will be depleted from 385.6 to 107.6 million m3 between 

2015 and 2050, as recharge will decrease with demand increase. Therefore, implementing water management strategies 

such as re-use and polishing, which are under-exploited water sources in the study area should be a priority towards 

sustainable development. The information obtained from WEAP model enhanced understanding on water demand drivers 

and its efficient use, which will help in sustainable management of the resource in Mbagathi sub-catchment. Obtained 

results can be extrapolated to help in water management of neighbouring counties now and into the future. 
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